Investigating the Effects of Environment Size for Co-
Evolving Deep Q-Learning Agents in ‘Hunters vs Runners’

(Using MESA)
Matthew A. Ford

Department of Informatics, University of Sussex, BN1 9QH, UK

mf472(@sussex.ac.uk

Abstract - This paper explores how the size of
an environment affects the behaviours and
optimisation of co-evolving agents in ‘Hunters
vs Runners’. Using deep Q-learning (DQL), the
agents are trained to compete within a shared
environment of varying sizes. This study
investigates how the environment size impact
the fitness and activation values of the agents to
outline if they find multiple strategies, and if
that is an optimal solution.

The results of this investigation suggest that, for
this game, starting the agents further from their
outlined goal increases performance as it allows
for the system to train and traverse the fitness
landscape for more time, therefore bypassing
several local optima. The results offer an insight
into the importance of environment design in
the training of multi-agent reinforcement
learning (MARL) systems.

1. Introduction

This paper investigates how the environment
size affects the behaviour of co-evolving agents
in the game ‘Hunters vs Runners’.

‘Hunters vs Runners’ is a game where hunters
attempt to stop runners from reaching the other
side of the play area. In this iteration, when a
runner is caught, they themselves become a
hunter, this creates a dynamic shift in the
game’s balance.

Agent-based modelling (ABM) is common in
simulating games for network studies but is
more-so common in studying population
dynamics (McLane, A. et al) and behavioural
patterns. As the game of ‘Hunters vs Runners’
very closely resembles a predator-prey dynamic
this helps to give reason to features that either
agent may have.

Matthew A. Ford

(1]

Deep Q-learning (DQL) has had some notable
successes, one similar example being deep
model-free Q-learning for general Atari
gameplaying (Mnih et al.).

DQL is a reinforcement learning algorithm that
follows an action-reward approach. Agents
receive rewards, either positive or negative,
based on their current state withing the
environment, and their chosen action. At each
iteration, a mini batch of states, actions,
rewards, and next states, are sampled from the
memory to train the network which then can
approximate the action-value function (Fan, J,
et al.). This allows for some features to be
emphasised over others. When rewards are well
defined, this leads to the agents learning the
desired behaviours.

Agent fitness is measured proportionally to
their reward. Genetic algorithms help to find
optimal solutions by replacing low-scoring
agents with those that scored higher. This
encourages the evolution of optimal strategies
and adopts a natural selection (Darwin, C)
based approach that can be observed in real-life
environments where there is competition. To
have an effective search there must be a fitness
function and selection pressure that gives
agents with a higher fitness a higher chance of
being selected for reproduction (Lozano, M).

As far as reinforcement-based learning is
concerned, it seems that the environment is
often an overlooked factor as to why agents
exhibit certain behaviours (desired or not). This
study hopes to give some evidence as to why
this may be an effector to the overall system.

March 2025


mailto:mf472@sussex.ac.uk

2. Methods

This section discusses how the experiment
was designed and carried out. Any set
parameters are outlined. First, the setup of the
environment to contain the agents is covered,
followed by the player agents and their
individual network and design choices. Then,
the process of fitness landscape traversal and
generational replacement is discussed.

2.1 | Environment and Visualisation

The environment for this experiment is
implemented as a class derived from from
MESA’s ‘model’ class. This allows for the
scheduling and control of all agents contained
within while also providing a grid to give the
agents a spatial representation that is vital for
interaction.

To ensure there were no biases with agent
scheduling order, a random activation was used.
With this, agents are chosen in a random order
to decide their moves instead of being chosen in
their order within the scheduler. As this is a
competitive game, this is important to avoid as
it would make the system unbalanced between
agents and could potentially become too
predictable.

The simulation environment, as depicted in
Figure 2.1, there are five main components:
hunter and runner agents, borders, obstacles,
and an escape zone. The hunters and runners are
dynamic agents, whereas the border, and
obstacles remain static.

- Obstacles

Figure 2.1: A capture of the game environment, labelled
with its key features.

To establish the initial conditions, the hunters,
runners and obstacles are randomly positioned
within the top, centre, and bottom 20% of the
environment’s height, respectively. The choice
to use these randomised spawn points helped

Matthew A. Ford

(2]

reduce the chance of overfitting the system,
ensuring the hunters and runners do not learn
fixed paths from a predetermined starting point
and that obstacle arrangements do not become
learnt by the system, therefore preventing the
system from replicating the same sequence of
actions over multiple games.

As the parameter sweep increases the width and
height, the initial setup consists of 5 hunters, 30
runners, and 20 obstacles. To prevent having
excessive sparsity in the larger environments,
these quantities are proportionally scaled with
the increase in width while remaining a fixed
ratio of 1:6:5.

Each game continues until either there are no
more active runners, or the step count exceeds
10,000. This threshold allows enough time for
the networks to explore, learn, and optimise
their decision-making processes. Each match
consists of 11 games, with a population
regeneration every 4.

2.2 | Player(s)

Each player operates with their own,
independent neural network to determine their
next actions. The structure of these networks is
consistent across both teams, with three hidden
layers between the input and output. To enhance
the training stability, layer normalisation is first
applied between the layers. Leaky ReLU
activation functions are used to prevent neurons
becoming inactive at zero-values, and dropout
is applied at a rate of 15% to all but the final
hidden layer to reduce the chance of overfitting.

Figures 2.2, and 2.3 show the network diagrams
for the hunters and runners. The only distinction
between these networks is the increased output
size for the runners which is due to them having
more possible actions

March 2025



Tnput it 02 ] Output

S
N
SN

S r/isﬁ

i\

A A )

)

i

0 LUK
MO=

?fm.-‘, o

K 7'.4..' /
PO

Figure 2.2: A visual representation of the hunter neural
network

Input hi ] 3 Output

NN

l "lt'f. VY
AR

(A

TS

"
*‘
) .

*
e
SR

St

Figure 2.3: A visual representation of the runner neural
network

The reason for runners having more actions
than hunters is due to what is seen in natural
systems. It is more common for prey to have
movement advantages over  predators,
something which has been incorporated in this
simulation.

As illustrated in Figure 2.4 the runners have the
ability to move diagonally, making their
movement on the grid more efficient which is
useful for evading hunters. To further constrain
the hunter movement, it was decided that it will
only be possible for them to change direction
every three steps. This limitation prevents the
hunter from making turns that were too sharp,
ensuring each move was more deliberate and
strategic.

R H&R R

H&R Agent H&R

R H&R R

Figure 2.4: Possible movement directions of hunter (H)
and runner (R) agents at any given time.

Matthew A. Ford

(3]

To limit the ‘sight’ distance of the players, a
decision was made to limit their vision to a
neighbourhood size of 10. This is again a Moore
neighbourhood structure and therefore forms
square, spanning 10 grid spaces from all sides
of the agent.

For training, each agent network receives a
constructed state representation. As depicted in
Figure 2.5, states consist of 14 numerical
values. The decision to include only the relative
position of the nearest enemy agent was an
intentional design choice to restrict the data
entering through the state and preventing
unnecessary complexity. By limiting this
information, agents are encouraged to develop
direct strategic approaches, making them more
so react to imminent threats or opportunities.

Relative
Position

Closest Hunter
Position

Current
Position

126, 40] 5.3

Initial Current
Team Team

Reward

0 4 0

Nearby Hunter
Count

2 a 24 0 6

Can Catch Steps

Move
Runner Survived Last Move

Has Escaped

33

Figure 2.5: An example of a state representation
memorised and processed by the network to train and
make action predictions more accurate.

These states are stored in a memory backlog
which is used in training the neural network to
extract features / trends with the states and their
given reward.

2.2.1 | Hunters

The rewards for the hunters focus on moving
towards and successfully capturing runners.
Figure 2.6 presents the reward table for the
outlined actions.

Situation Reward
Stay Idle -3 * consecutive idle steps
New Position Visited +3 if True, else -2
Against Border -50
Move Closer to Runner +5
Keep Distance from Runner -2
Move Away from Runner -10
Catch Runner +1000
Was a Runner +ve reward ¥= %

Figure 2.6: The reward table for agents on the hunter
team.

The structure of these rewards incentivises
hunters to maintain movement, avoid borders,
and pursue and successfully catch runners.

March 2025



As the agent must choose to catch the agent
through a network output, they will slowly learn
what is the viable circumstance to catch a
runner. As the runners can be caught and
converted to a hunter, to prevent exploitation,
any positive reward given to these agents are
quartered. This is to discourage runners from
deliberately seeking capture to increase their
reward as a hunter.

An element of the state representation seen in
Figure 2.5 is the “can catch runner” input. To
prevent newly converted hunters from
immediately catching their neighbours, there is
a 20-step cooldown to give time for runners to
move.

In addition to their existing constraints, the
hunters also are restricted from switching
direction immediately. Instead, they can only
change their trajectory every 3 steps. This
makes it so that a hunters movements need to
be more strategic to intercept runners. Once
again, this mimics what would be seen naturally
with runners (prey) being more agile than
hunters (predators).

2.2.2 | Runners

The main goal of the runners is to avoid the
hunters and make it to the other side of the play
area. Figure 2.7 shows the reward table used for
this.

Situation Reward
Stay Idle -3 * consecutive idle steps
New Position Visited +3 if True, else -2
Against Border -50
Escaped +10,000
Enemy Near + Grouped - number of tecinmates nearby
Move Closer to Hunter -2
Keep Distance from Hunter -1
Move Further from Hunter +5
Move Towards Goal +1

Caught by Hunter -1500

Figure 2.7: The reward table for agents on the runner
team.

As seen by comparing the two reward tables,
the entries for staying idle, visiting new
positions, and staying away from borders are
the same. This is because that specific
behaviour is required to stop agents from
gathering in corners or against borders which
was very commonly seen in the early stages.

Matthew A. Ford

(4]

The reward for escaping is much larger than any
of the other rewards as this is the main goal of
the runners, and once achieved, the runner
cannot earn any more points for the game.
Therefore, this acts as compensation.

To discourage groupings of runners when there
is an enemy within sight distance, a negative
reward is added when an enemy can be seen,
and a teammate is directly next to the agent.

When a runner is caught by a hunter, it also adds
another substantial negative reward. This is to
highly discourage this behaviour, and through
the networks ability to decipher patterns, this
should allow the runners to gradually learn to
evade hunters. This therefore will lead to an
increase in escapees.

2.3 | Genetic Algorithms and Agent Metrics

To define a fitness measure for the performance
of agents, a continuous reward was retained
across multiple games. As the system is based
on rewards, this meant the fitness was
proportional to the reward.

fitness < reward

To traverse the fitness landscape and identify
optimal activation values and network weights,
a simulated annealing-inspired approach was
employed. Here, exploration rate (&) was
equivalent to the ‘temperature’. The decay of ¢
over time is controlled by a decay rate (1)
where:

E41 = & * 4

As seen in Figure 2.8, for each game, the
exploration started at 1 meaning that the moves
were decided completely randomly. Then this
was decreased every step to help the system
converge on an optimal solution.

Exploration Rate over a Single Match

e Number

Figure 2.8: The decrease of the exploration rate over the
course of a match.

March 2025



To help prevent the training converging on local
optima, the exploration rate increases by 10%
every time it is detected that the average reward
is decreasing. This allows for the searching
algorithm to make ‘jumps’ and hopefully
explore new moves from its current position
that increase the reward again. This can be seen
in the 5" game.

Other hyperparameters that were also
controlled included learning rate and discount
factor. Learning rate was again decayed over
time using the same decay rate as the
exploration. This helped reduce the step sizes
when the network set new g-values and
ultimately allowed for a faster convergence.

Discount factor was used to prevent cyclic
behaviour where agents find repeated
sequences of movements to achieve a high
reward without following the desired
behaviour. This meant that the reward given by
actions was decreased by a small constant over
time.

For population management, a simple
truncation selection function was used, tracking
the top three preforming agents. The lowest
performing 50% of agents were replaced using
a hybrid selection approach. As illustrated in
Figure 2.9, 10% were replaced with a
completely random selection from the top three
agents of that type, and the remaining 40% were
replaced with a random choice of all agents in
the top 50% with the selection probabilities
weighted by reward. This gave a ‘survival of the
fittest’ dynamic whilst preserving population
diversity and avoiding convergence on an early
local optimum.

10% 50%

Replaced with a

I

|

T

I Replaced with a
random agent from |

I

1

I

I

random agent from
the top 50%

Remains the same

the top 3 of all time

Figure 2.9: A representation of the truncation selection
process of replacing the population of agents.

Matthew A. Ford

(3]

3. Results

This section discusses the results produced
from the parameter sweep. First identifying the
highest and lowest performing values followed
by an exploration into the agent ‘s fitness and
activation values for each.

Figure 3.1 shows the heatmap of the percentage
of escaped runners for each value of the
parameter sweep. Here there is a clear gradient
showing that a larger height was more
influential to the performance than the width.

Hestmap of Average % Runners Escaped

L
o
| ! |
&- “
®
o

@ “ W 5 N 125

y %
Grid Wdth

Giridl Height

w

B

Figure 3.1: A heatmap showing the average percentage
of hunters escaped for each match run during the
parameter sweep.

This figure shows that the highest performance
is at:

w = 50and h = 135
And the lowest performance is at:

w = 125and h = 75

3.1 | Highest Performance Results

As seen in Figure 3.2, the runner’s average
consistently stays at ~0. This is much higher
than the top performing hunters. It must be
noted that on these graphs, the default value for
there being no current top hunter / runner is 0.
Therefore, all the fitness graphs start from here.
As the top agent averages are so far apart, this

March 2025



means that the runners are completing their 3.2 | Lowest Performance Results
goals more often than hunters.

Figure 3.3 shows the average fitness for the

Average Fitness of Top Performing Agents with Grid Size 50 x 135 p g :
0 ~
i \
o W Average Fitness of Top Performing Agents with Grid Size 125 x 75
-20000 AN -
TN P 0] == —
Vo Nemee - — SeaD ~, -
L= i\ === ‘\\ _______ s, .
\ - \ — \
40000 \ [\ v Ne= N
g v s W \ N
£ \ ¥ W ; 20000 \ N e
= \ 7 \ \ 7 \ P [l
£ o000 y W ) \ e 4
= v s F \ -~
7 [ N £ 40000 4 \ , |
& ¥ WS £ \ \
—80000 1 \‘ / ’ 2 \ \
YA E . \ ;
[ 3 \ /
——  Hunters v = -60000 L /
100000 { — Rumners 13 a \ B
=== Hunter Average ' ) 4 /
=== Runner Average ¢ - J \ !
- erage 80000 Hunters l\ il
0 3 4 6 8 —— Runners i !
Game Number —=- Hunter Average y/
100000 1 = Runner Average (]
. . 0
Figure 3.2: A graph showing how the average and best

2 4 6
finesses of the hunter and runner agents change each

game for the best performing match.

Game Number

Figure 3.4: A graph showing how the average and best
finesses of the hunter and runner agents change each
Figure 3.3 shows the average activation values

game for the worst performing match.
of each agent’s network layers over the course
of a match. As seen, for both the hunters and the
runners, the “X7” and “X2” layers both have a
lot of noise but are gradually growing upwards.

Compared to the best performing match, the top
agent’s averages are much closer together. This
would have therefore caused the hunters to be
more effective in catching the runners and as a
| e result, the match had a lower escape percentage.
In terms of the overall averages for each team,

they don’t deviate too far from that shown in

Figure 3.2. This therefore shows that the

training process per match is very similar every

time, just different local optima are found.

Looking into the activation values shown in

/ Figure 3.5, the first two layers’ activation

o values have a gradual increase again. The more

noticeable difference is in the “X3” layer

Figure 3.3: Plotting of the average activation vah’4es on values. The hunters again converge on a higher
all three layers as the match progresses for the highest .. I heref b .

performing match. activation value, therefore becoming more

aggressive on that feature, but the runners have
When it comes to the “X3” layer, it shows that two main clusters. It seems that they are split
most of the agents fall for a higher activation between having a high and low activation value.
value. This shows that the agents are acting
more aggressively with the feature in this layer.
As there aren’t more than one obvious cluster,
it can be said that in this instance, all the agents
learnt to adopt the same strategy.

As the gradient also converges, this also proves
that the model was starting to stabilise and
therefore shows that overfitting was avoided.

Activation Value

Figure 3.5: Plotting of the average activation values on
all three layers as the match progresses for the lowest
performing match.

Matthew A. Ford

[6] March 2025



Due to the goal being very near, this split could
have come from the agents reaching the goal
too quickly and therefore did not have the time
to explore fitness landscape more thoroughly.
But for the hunters, this allowed them to
efficiently reach agents nearby and complete
their goal, making it a much more optimal
scenario for them.

3.4 | Further Analysis of Results

Given the data provided from this
experiment, and upon visualising the results; to
have a higher escape rate, it was found to be
more optimal for runners to start further away
from the goal and therefore more important to
have a larger environment height.

The reasoning behind this is that the agents
have more time to learn and converge on similar
optimal solutions. This is seen in the activation
values where the agent’s averages were all the
same range. Having games end too quickly,
possibly due to random moves, has seemed to
change the population strategies and made
some agents converge on a less-fit local optima
which is undesirable.

4. Discussion

In conclusion, this experiment has shown that
for similar games to ‘Hunters vs Runners’, it is
very important for the environment to allow for
space between agents and their goals. By
limiting the environment size, it allows for
agents to get stuck on local optima which can
be avoided given exploration rate changes and
time to process and learn from the new actions
taken.

Regarding the hypothesis, this has proven it to
be incorrect as it appears that having a goal be
discovered too early affects the development of
these types of agents.

The system itself does prove to be adaptive as
co-evolution forces both the runners and
hunters to react to each other’s strategies to
maximise their reward.

The next step of this report would be to explore
the network sizes and see how that may affect
the overall performance by allowing agents to

Matthew A. Ford

(7]

define more features and have a much more
granular analysis of the current state.

This report hopes to give some contribution to
the field of agent-based modelling in respect to
the design of the environment dependent on the
overall goals.

4. References
Darwin, C (1859) On the Origin of Species.

https://www.taylorfrancis.com/chapters/edit/10
.4324/978100319465 1-10/origin-species-
charles-darwin

Fan, J., Wang, Z., Xie, Y., Yang, Z. (2020)
A Theoretical Analysis of Deep Q-Learning.

https://proceedings.mlr.press/v120/yang20a

Lozano, M. Herrera, F. Cano, J. R. (2008).
Replacement Strategies to Preserve Useful
Diversity in Steady-State Genetic Algorithms

https://doi.org/10.1016/1.ins.2008.07.03 1

McLane, A, Semeniuk, C, McDermid, G,
Marceau, D. (2011). The role of agent-based
models in wildlife ecology and management.

https://doi.org/10.1016/j.ecolmodel.2011.01.02

Mnih, V., Kavukcuoglu, K., Silver, D. et
al. (2015). Human-level control through deep
reinforcement learning.

https://doi.org/10.1038/naturel 4236

March 2025


https://www.taylorfrancis.com/chapters/edit/10.4324/9781003194651-10/origin-species-charles-darwin
https://www.taylorfrancis.com/chapters/edit/10.4324/9781003194651-10/origin-species-charles-darwin
https://www.taylorfrancis.com/chapters/edit/10.4324/9781003194651-10/origin-species-charles-darwin
https://proceedings.mlr.press/v120/yang20a
https://doi.org/10.1016/j.ins.2008.07.031
https://doi.org/10.1016/j.ecolmodel.2011.01.02
https://doi.org/10.1038/nature14236

