
Matthew A. Ford [1] March 2025

Investigating the Effects of Environment Size for Co-

Evolving Deep Q-Learning Agents in ‘Hunters vs Runners’

(Using MESA)

Matthew A. Ford

Department of Informatics, University of Sussex, BN1 9QH, UK

mf472@sussex.ac.uk

 Abstract - This paper explores how the size of

an environment affects the behaviours and

optimisation of co-evolving agents in ‘Hunters

vs Runners’. Using deep Q-learning (DQL), the

agents are trained to compete within a shared

environment of varying sizes. This study

investigates how the environment size impact

the fitness and activation values of the agents to

outline if they find multiple strategies, and if

that is an optimal solution.

The results of this investigation suggest that, for

this game, starting the agents further from their

outlined goal increases performance as it allows

for the system to train and traverse the fitness

landscape for more time, therefore bypassing

several local optima. The results offer an insight

into the importance of environment design in

the training of multi-agent reinforcement

learning (MARL) systems.

1. Introduction

 This paper investigates how the environment

size affects the behaviour of co-evolving agents

in the game ‘Hunters vs Runners’.

‘Hunters vs Runners’ is a game where hunters

attempt to stop runners from reaching the other

side of the play area. In this iteration, when a

runner is caught, they themselves become a

hunter, this creates a dynamic shift in the

game’s balance.

Agent-based modelling (ABM) is common in

simulating games for network studies but is

more-so common in studying population

dynamics (McLane, A. et al) and behavioural

patterns. As the game of ‘Hunters vs Runners’

very closely resembles a predator-prey dynamic

this helps to give reason to features that either

agent may have.

Deep Q-learning (DQL) has had some notable

successes, one similar example being deep

model-free Q-learning for general Atari

gameplaying (Mnih et al.).

DQL is a reinforcement learning algorithm that

follows an action-reward approach. Agents

receive rewards, either positive or negative,

based on their current state withing the

environment, and their chosen action. At each

iteration, a mini batch of states, actions,

rewards, and next states, are sampled from the

memory to train the network which then can

approximate the action-value function (Fan, J,

et al.). This allows for some features to be

emphasised over others. When rewards are well

defined, this leads to the agents learning the

desired behaviours.

Agent fitness is measured proportionally to

their reward. Genetic algorithms help to find

optimal solutions by replacing low-scoring

agents with those that scored higher. This

encourages the evolution of optimal strategies

and adopts a natural selection (Darwin, C)

based approach that can be observed in real-life

environments where there is competition. To

have an effective search there must be a fitness

function and selection pressure that gives

agents with a higher fitness a higher chance of

being selected for reproduction (Lozano, M).

As far as reinforcement-based learning is

concerned, it seems that the environment is

often an overlooked factor as to why agents

exhibit certain behaviours (desired or not). This

study hopes to give some evidence as to why

this may be an effector to the overall system.

mailto:mf472@sussex.ac.uk

Matthew A. Ford [2] March 2025

2. Methods

 This section discusses how the experiment

was designed and carried out. Any set

parameters are outlined. First, the setup of the

environment to contain the agents is covered,

followed by the player agents and their

individual network and design choices. Then,

the process of fitness landscape traversal and

generational replacement is discussed.

2.1 | Environment and Visualisation

 The environment for this experiment is

implemented as a class derived from from

MESA’s ‘model’ class. This allows for the

scheduling and control of all agents contained

within while also providing a grid to give the

agents a spatial representation that is vital for

interaction.

To ensure there were no biases with agent

scheduling order, a random activation was used.

With this, agents are chosen in a random order

to decide their moves instead of being chosen in

their order within the scheduler. As this is a

competitive game, this is important to avoid as

it would make the system unbalanced between

agents and could potentially become too

predictable.

The simulation environment, as depicted in

Figure 2.1, there are five main components:

hunter and runner agents, borders, obstacles,

and an escape zone. The hunters and runners are

dynamic agents, whereas the border, and

obstacles remain static.

Figure 2.1: A capture of the game environment, labelled

with its key features.

To establish the initial conditions, the hunters,

runners and obstacles are randomly positioned

within the top, centre, and bottom 20% of the

environment’s height, respectively. The choice

to use these randomised spawn points helped

reduce the chance of overfitting the system,

ensuring the hunters and runners do not learn

fixed paths from a predetermined starting point

and that obstacle arrangements do not become

learnt by the system, therefore preventing the

system from replicating the same sequence of

actions over multiple games.

As the parameter sweep increases the width and

height, the initial setup consists of 5 hunters, 30

runners, and 20 obstacles. To prevent having

excessive sparsity in the larger environments,

these quantities are proportionally scaled with

the increase in width while remaining a fixed

ratio of 1:6:5.

Each game continues until either there are no

more active runners, or the step count exceeds

10,000. This threshold allows enough time for

the networks to explore, learn, and optimise

their decision-making processes. Each match

consists of 11 games, with a population

regeneration every 4.

2.2 | Player(s)

 Each player operates with their own,

independent neural network to determine their

next actions. The structure of these networks is

consistent across both teams, with three hidden

layers between the input and output. To enhance

the training stability, layer normalisation is first

applied between the layers. Leaky ReLU

activation functions are used to prevent neurons

becoming inactive at zero-values, and dropout

is applied at a rate of 15% to all but the final

hidden layer to reduce the chance of overfitting.

Figures 2.2, and 2.3 show the network diagrams

for the hunters and runners. The only distinction

between these networks is the increased output

size for the runners which is due to them having

more possible actions

Matthew A. Ford [3] March 2025

Figure 2.2: A visual representation of the hunter neural

network

Figure 2.3: A visual representation of the runner neural

network

The reason for runners having more actions

than hunters is due to what is seen in natural

systems. It is more common for prey to have

movement advantages over predators,

something which has been incorporated in this

simulation.

As illustrated in Figure 2.4 the runners have the

ability to move diagonally, making their

movement on the grid more efficient which is

useful for evading hunters. To further constrain

the hunter movement, it was decided that it will

only be possible for them to change direction

every three steps. This limitation prevents the

hunter from making turns that were too sharp,

ensuring each move was more deliberate and

strategic.

Figure 2.4: Possible movement directions of hunter (H)

and runner (R) agents at any given time.

To limit the ‘sight’ distance of the players, a

decision was made to limit their vision to a

neighbourhood size of 10. This is again a Moore

neighbourhood structure and therefore forms

square, spanning 10 grid spaces from all sides

of the agent.

For training, each agent network receives a

constructed state representation. As depicted in

Figure 2.5, states consist of 14 numerical

values. The decision to include only the relative

position of the nearest enemy agent was an

intentional design choice to restrict the data

entering through the state and preventing

unnecessary complexity. By limiting this

information, agents are encouraged to develop

direct strategic approaches, making them more

so react to imminent threats or opportunities.

Figure 2.5: An example of a state representation

memorised and processed by the network to train and

make action predictions more accurate.

These states are stored in a memory backlog

which is used in training the neural network to

extract features / trends with the states and their

given reward.

2.2.1 | Hunters

 The rewards for the hunters focus on moving

towards and successfully capturing runners.

Figure 2.6 presents the reward table for the

outlined actions.

Figure 2.6: The reward table for agents on the hunter

team.

The structure of these rewards incentivises

hunters to maintain movement, avoid borders,

and pursue and successfully catch runners.

Matthew A. Ford [4] March 2025

As the agent must choose to catch the agent

through a network output, they will slowly learn

what is the viable circumstance to catch a

runner. As the runners can be caught and

converted to a hunter, to prevent exploitation,

any positive reward given to these agents are

quartered. This is to discourage runners from

deliberately seeking capture to increase their

reward as a hunter.

An element of the state representation seen in

Figure 2.5 is the “can catch runner” input. To

prevent newly converted hunters from

immediately catching their neighbours, there is

a 20-step cooldown to give time for runners to

move.

In addition to their existing constraints, the

hunters also are restricted from switching

direction immediately. Instead, they can only

change their trajectory every 3 steps. This

makes it so that a hunters movements need to

be more strategic to intercept runners. Once

again, this mimics what would be seen naturally

with runners (prey) being more agile than

hunters (predators).

2.2.2 | Runners

 The main goal of the runners is to avoid the

hunters and make it to the other side of the play

area. Figure 2.7 shows the reward table used for

this.

Figure 2.7: The reward table for agents on the runner

team.

As seen by comparing the two reward tables,

the entries for staying idle, visiting new

positions, and staying away from borders are

the same. This is because that specific

behaviour is required to stop agents from

gathering in corners or against borders which

was very commonly seen in the early stages.

The reward for escaping is much larger than any

of the other rewards as this is the main goal of

the runners, and once achieved, the runner

cannot earn any more points for the game.

Therefore, this acts as compensation.

To discourage groupings of runners when there

is an enemy within sight distance, a negative

reward is added when an enemy can be seen,

and a teammate is directly next to the agent.

When a runner is caught by a hunter, it also adds

another substantial negative reward. This is to

highly discourage this behaviour, and through

the networks ability to decipher patterns, this

should allow the runners to gradually learn to

evade hunters. This therefore will lead to an

increase in escapees.

2.3 | Genetic Algorithms and Agent Metrics

To define a fitness measure for the performance

of agents, a continuous reward was retained

across multiple games. As the system is based

on rewards, this meant the fitness was

proportional to the reward.

𝒇𝒊𝒕𝒏𝒆𝒔𝒔 ∝ 𝒓𝒆𝒘𝒂𝒓𝒅

To traverse the fitness landscape and identify

optimal activation values and network weights,

a simulated annealing-inspired approach was

employed. Here, exploration rate (𝜀) was

equivalent to the ‘temperature’. The decay of 𝜀

over time is controlled by a decay rate (𝜆)

where:

𝜺𝒕+𝟏 = 𝜺𝒕 ∗ 𝝀

As seen in Figure 2.8, for each game, the

exploration started at 1 meaning that the moves

were decided completely randomly. Then this

was decreased every step to help the system

converge on an optimal solution.

Figure 2.8: The decrease of the exploration rate over the

course of a match.

Matthew A. Ford [5] March 2025

To help prevent the training converging on local

optima, the exploration rate increases by 10%

every time it is detected that the average reward

is decreasing. This allows for the searching

algorithm to make ‘jumps’ and hopefully

explore new moves from its current position

that increase the reward again. This can be seen

in the 5th game.

Other hyperparameters that were also

controlled included learning rate and discount

factor. Learning rate was again decayed over

time using the same decay rate as the

exploration. This helped reduce the step sizes

when the network set new q-values and

ultimately allowed for a faster convergence.

Discount factor was used to prevent cyclic

behaviour where agents find repeated

sequences of movements to achieve a high

reward without following the desired

behaviour. This meant that the reward given by

actions was decreased by a small constant over

time.

For population management, a simple

truncation selection function was used, tracking

the top three preforming agents. The lowest

performing 50% of agents were replaced using

a hybrid selection approach. As illustrated in

Figure 2.9, 10% were replaced with a

completely random selection from the top three

agents of that type, and the remaining 40% were

replaced with a random choice of all agents in

the top 50% with the selection probabilities

weighted by reward. This gave a ‘survival of the

fittest’ dynamic whilst preserving population

diversity and avoiding convergence on an early

local optimum.

Figure 2.9: A representation of the truncation selection

process of replacing the population of agents.

3. Results

 This section discusses the results produced

from the parameter sweep. First identifying the

highest and lowest performing values followed

by an exploration into the agent ‘s fitness and

activation values for each.

Figure 3.1 shows the heatmap of the percentage

of escaped runners for each value of the

parameter sweep. Here there is a clear gradient

showing that a larger height was more

influential to the performance than the width.

Figure 3.1: A heatmap showing the average percentage

of hunters escaped for each match run during the

parameter sweep.

This figure shows that the highest performance

is at:

𝑤 = 50 𝑎𝑛𝑑 ℎ = 135

And the lowest performance is at:

𝑤 = 125 𝑎𝑛𝑑 ℎ = 75

3.1 | Highest Performance Results

 As seen in Figure 3.2, the runner’s average

consistently stays at ~0. This is much higher

than the top performing hunters. It must be

noted that on these graphs, the default value for

there being no current top hunter / runner is 0.

Therefore, all the fitness graphs start from here.

As the top agent averages are so far apart, this

Matthew A. Ford [6] March 2025

means that the runners are completing their

goals more often than hunters.

Figure 3.2: A graph showing how the average and best

finesses of the hunter and runner agents change each

game for the best performing match.

Figure 3.3 shows the average activation values

of each agent’s network layers over the course

of a match. As seen, for both the hunters and the

runners, the “X1” and “X2” layers both have a

lot of noise but are gradually growing upwards.

Figure 3.3: Plotting of the average activation values on

all three layers as the match progresses for the highest

performing match.

When it comes to the “X3” layer, it shows that

most of the agents fall for a higher activation

value. This shows that the agents are acting

more aggressively with the feature in this layer.

As there aren’t more than one obvious cluster,

it can be said that in this instance, all the agents

learnt to adopt the same strategy.

As the gradient also converges, this also proves

that the model was starting to stabilise and

therefore shows that overfitting was avoided.

3.2 | Lowest Performance Results

 Figure 3.3 shows the average fitness for the

lowest performing match.

Figure 3.4: A graph showing how the average and best

finesses of the hunter and runner agents change each

game for the worst performing match.

Compared to the best performing match, the top

agent’s averages are much closer together. This

would have therefore caused the hunters to be

more effective in catching the runners and as a

result, the match had a lower escape percentage.

In terms of the overall averages for each team,

they don’t deviate too far from that shown in

Figure 3.2. This therefore shows that the

training process per match is very similar every

time, just different local optima are found.

Looking into the activation values shown in

Figure 3.5, the first two layers’ activation

values have a gradual increase again. The more

noticeable difference is in the “X3” layer

values. The hunters again converge on a higher

activation value, therefore becoming more

aggressive on that feature, but the runners have

two main clusters. It seems that they are split

between having a high and low activation value.

Figure 3.5: Plotting of the average activation values on

all three layers as the match progresses for the lowest

performing match.

Matthew A. Ford [7] March 2025

Due to the goal being very near, this split could

have come from the agents reaching the goal

too quickly and therefore did not have the time

to explore fitness landscape more thoroughly.

But for the hunters, this allowed them to

efficiently reach agents nearby and complete

their goal, making it a much more optimal

scenario for them.

3.4 | Further Analysis of Results

 Given the data provided from this

experiment, and upon visualising the results; to

have a higher escape rate, it was found to be

more optimal for runners to start further away

from the goal and therefore more important to

have a larger environment height.

The reasoning behind this is that the agents

have more time to learn and converge on similar

optimal solutions. This is seen in the activation

values where the agent’s averages were all the

same range. Having games end too quickly,

possibly due to random moves, has seemed to

change the population strategies and made

some agents converge on a less-fit local optima

which is undesirable.

4. Discussion

 In conclusion, this experiment has shown that

for similar games to ‘Hunters vs Runners’, it is

very important for the environment to allow for

space between agents and their goals. By

limiting the environment size, it allows for

agents to get stuck on local optima which can

be avoided given exploration rate changes and

time to process and learn from the new actions

taken.

Regarding the hypothesis, this has proven it to

be incorrect as it appears that having a goal be

discovered too early affects the development of

these types of agents.

The system itself does prove to be adaptive as

co-evolution forces both the runners and

hunters to react to each other’s strategies to

maximise their reward.

The next step of this report would be to explore

the network sizes and see how that may affect

the overall performance by allowing agents to

define more features and have a much more

granular analysis of the current state.

This report hopes to give some contribution to

the field of agent-based modelling in respect to

the design of the environment dependent on the

overall goals.

4. References

 Darwin, C (1859) On the Origin of Species.

https://www.taylorfrancis.com/chapters/edit/10

.4324/9781003194651-10/origin-species-

charles-darwin

 Fan, J., Wang, Z., Xie, Y., Yang, Z. (2020)

A Theoretical Analysis of Deep Q-Learning.

https://proceedings.mlr.press/v120/yang20a

Lozano, M. Herrera, F. Cano, J. R. (2008).

Replacement Strategies to Preserve Useful

Diversity in Steady-State Genetic Algorithms

https://doi.org/10.1016/j.ins.2008.07.031

 McLane, A, Semeniuk, C, McDermid, G,

Marceau, D. (2011). The role of agent-based

models in wildlife ecology and management.

https://doi.org/10.1016/j.ecolmodel.2011.01.02

 Mnih, V., Kavukcuoglu, K., Silver, D. et

al. (2015). Human-level control through deep

reinforcement learning.

https://doi.org/10.1038/nature14236

https://www.taylorfrancis.com/chapters/edit/10.4324/9781003194651-10/origin-species-charles-darwin
https://www.taylorfrancis.com/chapters/edit/10.4324/9781003194651-10/origin-species-charles-darwin
https://www.taylorfrancis.com/chapters/edit/10.4324/9781003194651-10/origin-species-charles-darwin
https://proceedings.mlr.press/v120/yang20a
https://doi.org/10.1016/j.ins.2008.07.031
https://doi.org/10.1016/j.ecolmodel.2011.01.02
https://doi.org/10.1038/nature14236

