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 Abstract - This paper explores how the size of 

an environment affects the behaviours and 

optimisation of co-evolving agents in ‘Hunters 

vs Runners’. Using deep Q-learning (DQL), the 

agents are trained to compete within a shared 

environment of varying sizes. This study 

investigates how the environment size impact 

the fitness and activation values of the agents to 

outline if they find multiple strategies, and if 

that is an optimal solution.  

The results of this investigation suggest that, for 

this game, starting the agents further from their 

outlined goal increases performance as it allows 

for the system to train and traverse the fitness 

landscape for more time, therefore bypassing 

several local optima. The results offer an insight 

into the importance of environment design in 

the training of multi-agent reinforcement 

learning (MARL) systems. 
 

1. Introduction 

    This paper investigates how the environment 

size affects the behaviour of co-evolving agents 

in the game ‘Hunters vs Runners’. 

‘Hunters vs Runners’ is a game where hunters 

attempt to stop runners from reaching the other 

side of the play area. In this iteration, when a 

runner is caught, they themselves become a 

hunter, this creates a dynamic shift in the 

game’s balance.   

Agent-based modelling (ABM) is common in 

simulating games for network studies but is 

more-so common in studying population 

dynamics (McLane, A.  et al) and behavioural 

patterns. As the game of ‘Hunters vs Runners’ 

very closely resembles a predator-prey dynamic 

this helps to give reason to features that either 

agent may have. 

Deep Q-learning (DQL) has had some notable 

successes, one similar example being deep 

model-free Q-learning for general Atari 

gameplaying (Mnih et al.). 

DQL is a reinforcement learning algorithm that 

follows an action-reward approach. Agents 

receive rewards, either positive or negative, 

based on their current state withing the 

environment, and their chosen action. At each 

iteration, a mini batch of states, actions, 

rewards, and next states, are sampled from the 

memory to train the network which then can 

approximate the action-value function (Fan, J, 

et al.). This allows for some features to be 

emphasised over others. When rewards are well 

defined, this leads to the agents learning the 

desired behaviours. 

Agent fitness is measured proportionally to 

their reward. Genetic algorithms help to find 

optimal solutions by replacing low-scoring 

agents with those that scored higher. This 

encourages the evolution of optimal strategies 

and adopts a natural selection (Darwin, C) 

based approach that can be observed in real-life 

environments where there is competition. To 

have an effective search there must be a fitness 

function and selection pressure that gives 

agents with a higher fitness a higher chance of 

being selected for reproduction (Lozano, M). 

As far as reinforcement-based learning is 

concerned, it seems that the environment is 

often an overlooked factor as to why agents 

exhibit certain behaviours (desired or not). This 

study hopes to give some evidence as to why 

this may be an effector to the overall system. 
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2. Methods 

    This section discusses how the experiment 

was designed and carried out. Any set 

parameters are outlined. First, the setup of the 

environment to contain the agents is covered, 

followed by the player agents and their 

individual network and design choices. Then, 

the process of fitness landscape traversal and 

generational replacement is discussed. 

2.1 | Environment and Visualisation 

    The environment for this experiment is 

implemented as a class derived from from 

MESA’s ‘model’ class. This allows for the 

scheduling and control of all agents contained 

within while also providing a grid to give the 

agents a spatial representation that is vital for 

interaction. 

To ensure there were no biases with agent 

scheduling order, a random activation was used. 

With this, agents are chosen in a random order 

to decide their moves instead of being chosen in 

their order within the scheduler. As this is a 

competitive game, this is important to avoid as 

it would make the system unbalanced between 

agents and could potentially become too 

predictable. 

The simulation environment, as depicted in 

Figure 2.1, there are five main components: 

hunter and runner agents, borders, obstacles, 

and an escape zone. The hunters and runners are 

dynamic agents, whereas the border, and 

obstacles remain static.  
 

 

Figure 2.1: A capture of the game environment, labelled 

with its key features. 

To establish the initial conditions, the hunters, 

runners and obstacles are randomly positioned 

within the top, centre, and bottom 20% of the 

environment’s height, respectively. The choice 

to use these randomised spawn points helped 

reduce the chance of overfitting the system, 

ensuring  the hunters and runners do not learn 

fixed paths from a predetermined starting point 

and that obstacle arrangements do not become 

learnt by the system, therefore preventing the 

system from replicating the same sequence of 

actions over multiple games. 

As the parameter sweep increases the width and 

height, the initial setup consists of 5 hunters, 30  

runners, and 20 obstacles. To prevent having 

excessive sparsity in the larger environments, 

these quantities are proportionally scaled with 

the increase in width while remaining a fixed 

ratio of 1:6:5. 

Each game continues until either there are no 

more active runners, or the step count exceeds 

10,000. This threshold allows enough time for 

the networks to explore, learn, and optimise 

their decision-making processes. Each match 

consists of 11 games, with a  population 

regeneration every 4. 
 

2.2 | Player(s) 

    Each player operates with their own, 

independent neural network to determine their 

next actions. The structure of these networks is 

consistent across both teams, with three hidden 

layers between the input and output. To enhance 

the training stability, layer normalisation is first 

applied between the layers. Leaky ReLU 

activation functions are used to prevent neurons 

becoming inactive at zero-values, and dropout 

is applied at a rate of 15% to all but the final 

hidden layer to reduce the chance of overfitting. 

Figures 2.2, and 2.3 show the network diagrams 

for the hunters and runners. The only distinction 

between these networks is the increased output 

size for the runners which is due to them having 

more possible actions  
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Figure 2.2: A visual representation of the hunter neural 

network 

 

Figure 2.3: A visual representation of the runner neural 

network 

The reason for runners having more actions 

than hunters is due to what is seen in natural 

systems. It is more common for prey to have 

movement advantages over predators, 

something which has been incorporated in this 

simulation. 

As illustrated in Figure 2.4 the runners have the 

ability to move diagonally, making their 

movement on the grid more efficient which is 

useful for evading hunters. To further constrain 

the hunter movement, it was decided that it will 

only be possible for them to change direction 

every three steps. This limitation  prevents the 

hunter from making turns that were too sharp, 

ensuring each move was more deliberate and 

strategic. 

 

Figure 2.4: Possible movement directions of hunter (H) 

and runner (R) agents at any given time. 

To limit the ‘sight’ distance of the players, a 

decision was made to limit their vision to a 

neighbourhood size of 10. This is again a Moore 

neighbourhood structure and therefore forms 

square, spanning 10 grid spaces from all sides 

of the agent. 

For training, each agent network receives a 

constructed state representation. As depicted in 

Figure 2.5, states consist of 14 numerical 

values. The decision to include only the relative 

position of the nearest enemy agent was an 

intentional design choice to restrict the data 

entering through the state and preventing 

unnecessary complexity. By limiting this 

information, agents are encouraged to develop 

direct strategic approaches, making them more 

so react to imminent threats or opportunities.  

 

Figure 2.5: An example of a state representation 

memorised and processed by the network to train and 

make action predictions more accurate. 

These states are stored in a memory backlog 

which is used in training the neural network to 

extract features / trends with the states and their 

given reward. 
 

2.2.1 | Hunters 

    The rewards for the hunters focus on moving 

towards and successfully capturing runners. 

Figure 2.6 presents the reward table for the 

outlined actions. 

 
Figure 2.6: The reward table for agents on the hunter 

team. 

The structure of these rewards incentivises 

hunters to maintain movement, avoid borders, 

and pursue and successfully catch runners.  
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As the agent must choose to catch the agent 

through a network output, they will slowly learn 

what is the viable circumstance to catch a 

runner. As the runners can be caught and 

converted to a hunter, to prevent exploitation, 

any positive reward given to these agents are 

quartered. This is to discourage runners from 

deliberately seeking capture to increase their 

reward as a hunter. 

An element of the state representation seen in 

Figure 2.5 is the “can catch runner” input. To 

prevent newly converted hunters from 

immediately catching their neighbours, there is 

a 20-step cooldown to give time for runners to 

move. 

In addition to their existing constraints, the 

hunters also are restricted from switching 

direction immediately. Instead, they can only 

change their trajectory every 3 steps. This 

makes it so that a hunters movements need to 

be more strategic to intercept runners. Once 

again, this mimics what would be seen naturally 

with runners (prey) being more agile than 

hunters (predators). 
 

2.2.2 | Runners 

    The main goal of the runners is to avoid the 

hunters and make it to the other side of the play 

area. Figure 2.7 shows the reward table used for 

this. 

 

Figure 2.7: The reward table for agents on the runner 

team. 

As seen by comparing the two reward tables,  

the entries for  staying idle, visiting new 

positions, and staying away from borders are 

the same. This is because that specific 

behaviour is required to stop agents from 

gathering in corners or against borders which 

was very commonly seen in the early stages. 

The reward for escaping is much larger than any 

of the other rewards as this is the main goal of 

the runners, and once achieved, the runner 

cannot earn any more points for the game. 

Therefore, this acts as compensation. 

To discourage groupings of runners when there 

is an enemy within sight distance, a negative 

reward is added when an enemy can be seen, 

and a teammate is directly next to the agent. 

When a runner is caught by a hunter, it also adds 

another substantial negative reward. This is to 

highly discourage this behaviour, and through 

the networks ability to decipher patterns, this 

should allow the runners to gradually learn to 

evade hunters. This therefore will lead to an 

increase in escapees. 
 

2.3 | Genetic Algorithms and Agent Metrics 

To define a fitness measure for the performance 

of agents, a continuous reward was retained 

across multiple games. As the system is based 

on rewards, this meant the fitness was 

proportional to the reward. 

𝒇𝒊𝒕𝒏𝒆𝒔𝒔 ∝ 𝒓𝒆𝒘𝒂𝒓𝒅 

To traverse the fitness landscape and identify 

optimal activation values and network weights, 

a simulated annealing-inspired approach was 

employed. Here, exploration rate (𝜀) was  

equivalent to the ‘temperature’. The decay of  𝜀 

over time is controlled by a decay rate (𝜆) 

where: 

𝜺𝒕+𝟏  =  𝜺𝒕  ∗  𝝀 

As seen in Figure 2.8, for each game, the 

exploration started at 1 meaning that the moves 

were decided completely randomly. Then this 

was decreased every step to help the system 

converge on an optimal solution. 

 

Figure 2.8: The decrease of the exploration rate over the 

course of a match. 
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To help prevent the training converging on local 

optima, the exploration rate increases by 10% 

every time it is detected that the average reward 

is decreasing. This allows for the searching 

algorithm to make ‘jumps’ and hopefully 

explore new moves from its current position 

that increase the reward again. This can be seen 

in the 5th game.   

Other hyperparameters that were also 

controlled included learning rate and discount 

factor. Learning rate was again decayed over 

time using the same decay rate as the 

exploration. This helped reduce the step sizes 

when the network set new q-values and 

ultimately allowed for a faster convergence.  

Discount factor was used to prevent cyclic 

behaviour where agents find repeated 

sequences of movements to achieve a high 

reward without following the desired 

behaviour. This meant that the reward given by 

actions was decreased by a small constant over 

time. 

For population management, a simple 

truncation selection function was used, tracking 

the top three preforming agents. The lowest 

performing 50% of agents were replaced using 

a hybrid selection approach. As illustrated in 

Figure 2.9, 10% were replaced with a 

completely random selection from the top three 

agents of that type, and the remaining 40% were 

replaced with a random choice of all agents in 

the top 50% with the selection probabilities 

weighted by reward. This gave a ‘survival of the 

fittest’ dynamic whilst preserving population 

diversity and avoiding convergence on an early 

local optimum. 
 

 

Figure 2.9: A representation of the truncation selection 

process of replacing the population of agents. 

 

 

 

3. Results 

    This section discusses the results produced 

from the parameter sweep. First identifying the 

highest and lowest performing values followed 

by an exploration into the agent ‘s fitness and 

activation values for each. 

Figure 3.1 shows the heatmap of the percentage 

of escaped runners for each value of the 

parameter sweep. Here there is a clear gradient 

showing that a larger height was more 

influential to the performance than the width.  

 

Figure 3.1: A heatmap showing the average percentage 

of hunters escaped for each match run during the 

parameter sweep. 

This figure shows that the highest performance 

is at: 

𝑤 =  50 𝑎𝑛𝑑 ℎ =  135 

And the lowest performance is at: 

𝑤 =  125 𝑎𝑛𝑑 ℎ =  75 

 

3.1 | Highest Performance Results 

    As seen in Figure 3.2, the runner’s average 

consistently stays at ~0. This is much higher 

than the top performing hunters. It must be 

noted that on these graphs, the default value for 

there being no current top hunter / runner is 0. 

Therefore, all the fitness graphs start from here. 

As the top agent averages are so far apart, this 
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means that the runners are completing their 

goals more often than hunters. 

 

Figure 3.2: A graph showing how the average and best 

finesses of the hunter and runner agents change each 

game for the best performing match.  

Figure 3.3 shows the average activation values 

of each agent’s network layers over the course 

of a match. As seen, for both the hunters and the 

runners, the “X1” and “X2” layers both have a 

lot of noise but are gradually growing upwards.  

 

Figure 3.3: Plotting of the average activation values on 

all three layers as the match progresses for the highest 

performing match. 

When it comes to the “X3” layer, it shows that 

most of the agents fall for a higher activation 

value. This shows that the agents are acting 

more aggressively with the feature in this layer. 

As there aren’t more than one obvious cluster, 

it can be said that in this instance, all the agents 

learnt to adopt the same strategy. 

As the gradient also converges, this also proves 

that the model was starting to stabilise and 

therefore shows that overfitting was avoided. 
 

 

 

 

3.2 | Lowest Performance Results 

    Figure 3.3 shows the average fitness for the 

lowest performing match. 

 

Figure 3.4: A graph showing how the average and best 

finesses of the hunter and runner agents change each 

game for the worst performing match.  

Compared to the best performing match, the top 

agent’s averages are much closer together. This 

would have therefore caused the hunters to be 

more effective in catching the runners and as a 

result, the match had a lower escape percentage. 

In terms of the overall averages for each team, 

they don’t deviate too far from that shown in 

Figure 3.2. This therefore shows that the 

training process per match is very similar every 

time, just different local optima are found. 

Looking into the activation values shown in 

Figure 3.5, the first two layers’ activation 

values have a gradual increase again. The more 

noticeable difference is in the “X3” layer 

values. The hunters again converge on a higher 

activation value, therefore becoming more 

aggressive on that feature, but the runners have 

two main clusters. It seems that they are split 

between having a high and low activation value.   

 

Figure 3.5: Plotting of the average activation values on 

all three layers as the match progresses for the lowest 

performing match. 
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Due to the goal being very near, this split could 

have come from the agents reaching the goal 

too quickly and therefore did not have the time 

to explore fitness landscape more thoroughly. 

But for the hunters, this allowed them to 

efficiently reach agents nearby and complete 

their goal, making it a much more optimal 

scenario for them. 
 

3.4 | Further Analysis of Results 

    Given the data provided from this 

experiment, and upon visualising the results; to 

have a higher escape rate, it was found to be 

more optimal for runners to start further away 

from the goal and therefore more important to 

have a larger environment height. 

The reasoning behind this is that the agents 

have more time to learn and converge on similar 

optimal solutions. This is seen in the activation 

values where the agent’s averages were all the 

same range. Having games end too quickly, 

possibly due to random moves, has seemed to 

change the population strategies and made 

some agents converge on a less-fit local optima 

which is undesirable.  
 

4. Discussion 

   In conclusion, this experiment has shown that 

for similar games to ‘Hunters vs Runners’, it is 

very important for the environment to allow for 

space between agents and their goals. By 

limiting the environment size, it allows for 

agents to get stuck on local optima which can 

be avoided given exploration rate changes and 

time to process and learn from the new actions 

taken.  

Regarding the hypothesis, this has proven it to 

be incorrect as it appears that having a goal be 

discovered too early affects the development of 

these types of agents. 

The system itself does prove to be adaptive as 

co-evolution forces both the runners and 

hunters to react to each other’s strategies to 

maximise their reward. 

The next step of this report would be to explore 

the network sizes and see how that may affect 

the overall performance by allowing agents to 

define more features and have a much more 

granular analysis of the current state. 

This report hopes to give some contribution to 

the field of agent-based modelling in respect to 

the design of the environment dependent on the 

overall goals.  
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